User Tools

Site Tools


planning:building_services:ventilation:basics:types_of_ventilation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
planning:building_services:ventilation:basics:types_of_ventilation [2019/02/21 12:53]
cblagojevic
planning:building_services:ventilation:basics:types_of_ventilation [2022/05/22 19:20] (current)
wfeist [The convenient solution: supply and exhaust air systems with heat recovery]
Line 117: Line 117:
  
 Ventilation can also take place if a simple exhaust air system and external air inlets are used.  The external air inlets let fresh (cold) air in the required amounts into the rooms.  However, for the Passive House the ventilation heat losses that would be caused by the disposal of the unused extract air would be much too high.  It would only be possible to adjust the energy balance with a high heating output. Ventilation can also take place if a simple exhaust air system and external air inlets are used.  The external air inlets let fresh (cold) air in the required amounts into the rooms.  However, for the Passive House the ventilation heat losses that would be caused by the disposal of the unused extract air would be much too high.  It would only be possible to adjust the energy balance with a high heating output.
 +
 +===== Heat Recovery with a Counterflow Heat Exchanger =====
  
 **In Central Europe, Passive Houses only work if a highly efficient heat recovery system is also present**  This recovers the heat from the exhaust air and using a heat exchanger, transfers it back into the supply air without mixing the air flows. Today, modern ventilation technology allows a heat recovery rate of  between 75 and 95 %. This is possible due to counterflow heat exchangers and special energy-efficient fans (with so-called EC motors with a particularly high effectiveness), so that the recovered heat is 8 to 15 times the electricity consumed.\\ **In Central Europe, Passive Houses only work if a highly efficient heat recovery system is also present**  This recovers the heat from the exhaust air and using a heat exchanger, transfers it back into the supply air without mixing the air flows. Today, modern ventilation technology allows a heat recovery rate of  between 75 and 95 %. This is possible due to counterflow heat exchangers and special energy-efficient fans (with so-called EC motors with a particularly high effectiveness), so that the recovered heat is 8 to 15 times the electricity consumed.\\
Line 145: Line 147:
 ===== Conclusion ===== ===== Conclusion =====
  
-Passive Houses always have an integrated home ventilation system with heat recovery, and often this is the central component of the complete building services. Only high quality ventilation technology is suitable for the Passive House. The Passive House Institute has [[http://www.passiv.de/03_zer/Komp/Lueft/Lueft_F.htm|summarised these (in German) in the requirements for central ventilation units]]: Apart from a high heat recovery rate, low electricity consumption, and hygienically faultless and very quiet operation must be guaranteed.\\+Passive Houses always have an integrated home ventilation system with heat recovery, and often this is the central component of the complete building services. Only high quality ventilation technology is suitable for the Passive House. The Passive House Institute has [[https://passivehouse.com/03_certification/01_certification_components/02_certification_criteria/02_certification_criteria.htm |summarised these (in German) in the requirements for central ventilation units]]: Apart from a high heat recovery rate, low electricity consumption, and hygienically faultless and very quiet operation must be guaranteed.\\
 \\  \\ 
 ===== Literature ===== ===== Literature =====
planning/building_services/ventilation/basics/types_of_ventilation.1550750025.txt.gz · Last modified: 2019/02/21 12:53 by cblagojevic