certification:passive_house_categories:classic-plus-premium

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
certification:passive_house_categories:classic-plus-premium [2024/04/18 22:00] – [Introduction] jgrovesmithcertification:passive_house_categories:classic-plus-premium [2025/10/16 14:38] (current) – [Office complex for the Erdinger Moos wastewater association, architects: Architekturwerkstatt Vallentin] yaling.hsiao@passiv.de
Line 6: Line 6:
 ===== Introduction ===== ===== Introduction =====
  
-Anyone who has built or lives in a Passive House building already has this part of the energy transition taken care of. After all, the low energy demand in a Passive House can sustainably come from regional energy sources. The supply structure is transitioning from fossil sources to renewables at an encouragingly rapid pace. The conventional primary energy assessment systems for energy demand in buildings are based on old supply systems and do not work in the new one with an increasing share of renewables. The Passive House Institute therefore developed a new evaluation system based on renewable primary energy ([[basics:energy_and_ecology:primary_energy_renewable_per|PER, Primary Energy Renewable]]). Based on the achieved level of energy efficiency and the amount of renewable energy supply, Passive House certification is available in three classes: +Anyone who has built or lives in a Passive House building already has this part of the energy transition taken care of. After all, the low energy demand in a Passive House can sustainably come from regional energy sources. The supply structure is transitioning from fossil sources to renewables at an encouragingly rapid pace. The conventional primary energy assessment systems for energy demand in buildings are based on old supply systems and do not work in the new one with an increasing share of renewables. The Passive House Institute therefore developed a unique evaluation system based on renewable primary energy ([[basics:energy_and_ecology:primary_energy_renewable_per|PER, Primary Energy Renewable]]). Based on the achieved level of energy efficiency and the amount of renewable energy supply, Passive House certification is available in three classes: 
  
   * The **Passive House Classic**, which is the traditional Passive House   * The **Passive House Classic**, which is the traditional Passive House
Line 17: Line 17:
  
 \\ \\
 +===== PER and Passive House Classes =====
  
-\\ +Most people probably think of a single number when they hear the term Passive House: 15 kWh/(m²a). It describes the maximum demand for annual heating energy for compliance with the Passive House Standard. This figure is the bases of all of the classes because it provides a starting point by limiting the amount of useful energy made available for heating purposes indoors. Useful energy demand for cooling, airtightness, and criteria for comfort and hygiene are also the same for all three classes. 
-===== PER methodology in a nutshell =====+ 
 +But heating energy demand does not tell the whole story; after all, heating energy demand is roughly equal to hot water demand in a Passive House. Demand for household electricity is usually much higher. A building’s total energy demand – including the energy needed to provide the building with final energy – therefore also needs to be taken into account. This is where the Passive House classes come into play. They divide buildings into classes or categories based on their total renewable primary energy demand and their renewable primary power production (Figure 1).
  
-Most people probably think of a single number when they hear the term Passive House: 15 kWh/(m²a). It describes the maximum demand for annual heating energy for compliance with the Passive House Standard. This figure is the bases of all of the classes because it provides a starting point by limiting the amount of useful energy made available for heating purposes indoors. Useful energy demand for cooling, airtightness, and criteria for comfort and hygiene are also the same for all three classes.  
  
-But heating energy demand does not tell the whole story; after all, heating energy demand is roughly equal to hot water demand in a Passive House. Demand for household electricity is usually much higher. A building’s total energy demand – including the energy needed to provide the building with final energy – therefore also needs to be taken into account. This is where the Passive House classes come into playThey divide buildings into classes or categories based on their total renewable primary energy demand and their renewable primary power production (Figure 1)+[{{ :picopen:haeusergrafik_komplett_en_2025_mb_quer-01.jpg?600 |**Figure 1: The Passive House classes of Classic, Plus, and PremiumRequirements for PER demand and renewable energy generationHigher classes require lower renewable primary energy demand and additional renewable energy generation.**}}]
  
-[{{:picopen:20150311_passivehouseclasses_press_release_phi.jpg?600|**Figure 1: The new Passive House classes of Classic, Plus, and Premium. Requirements for PER demand and renewable energy generation. Classic is the current Passive House Standard. Higher classes require lower renewable primary energy demand and additional renewable energy generation.**}}] 
  
 ==== Generation and demand remain separated ==== ==== Generation and demand remain separated ====
Line 54: Line 54:
 If a small solar thermal array for hot water supply with six square meters of collector area is added, PER demand drops to 47 kWh/(m²TFA*a), while energy generation increases to 65 kWh/(m²ground*a) (1a). In terms of energy generation, the level of Passive House Plus is reached, and we are not far away in terms of demand either. In this variant, the building already generates slightly more final energy than it consumes. If the collector area triples to 18 square meters, however, PER demand drops even further to 43 kWh/(m²TFA*a), which fulfills Passive House Plus. However, the effects are minor (especially in the light of the high cost of three times more collector area) because the additional energy produced in the summer cannot be completely used; the hot water tank (now 2,000 liters) will be fully loaded (1b). If a small solar thermal array for hot water supply with six square meters of collector area is added, PER demand drops to 47 kWh/(m²TFA*a), while energy generation increases to 65 kWh/(m²ground*a) (1a). In terms of energy generation, the level of Passive House Plus is reached, and we are not far away in terms of demand either. In this variant, the building already generates slightly more final energy than it consumes. If the collector area triples to 18 square meters, however, PER demand drops even further to 43 kWh/(m²TFA*a), which fulfills Passive House Plus. However, the effects are minor (especially in the light of the high cost of three times more collector area) because the additional energy produced in the summer cannot be completely used; the hot water tank (now 2,000 liters) will be fully loaded (1b).
  
-[{{:picopen:passivhaus-klassen_gerstetten.jpg?700|Figure 2: Gerstetten single-family home: classifications depend on building components used. \\ © Passive House Institute. Photo: Werner Friedl. }}]+[{{ :picopen:passivhaus-klassen_gerstetten.jpg?700 |Figure 2: Gerstetten single-family home: classifications depend on building components used. \\ © Passive House Institute. Photo: Werner Friedl. }}]
  
 ==== Passive House Plus with a solar thermal array and heat recovery from shower water ==== ==== Passive House Plus with a solar thermal array and heat recovery from shower water ====
Line 68: Line 68:
  
 We still have a gap to close before reaching Passive House Premium. Simply optimizing building services will not get us there; we have to make changes to the building envelope. Instead of the original window frames of efficiency class phB, Passive House windows of class phA can be used to reduce annual demand for heating energy down to only 8 kWh/(m²TFA*a). In combination with heat recovery from shower water and optimized hot water distribution as in variant 1c, the roof can be completely covered with 123 square meters of photovoltaics as shown in variant 3b. Then, demand comes in at 30 kWh/(m²TFA*a) to fulfill Passive House Premium. However, generation is still too low at 88 kWh/(m²ground*a), even though twice as much energy is produced as is needed. One option is to add PV to the garage roof or southern façade of the building; alternatively, residents could invest in a community wind turbine. If a mere three-kilowatt stake is purchased in a local community wind farm (equivalent to 1/500 of a modern onshore wind turbine), the Passive House Premium level is reached, and nearly three times the amount of energy consumed is produced. We still have a gap to close before reaching Passive House Premium. Simply optimizing building services will not get us there; we have to make changes to the building envelope. Instead of the original window frames of efficiency class phB, Passive House windows of class phA can be used to reduce annual demand for heating energy down to only 8 kWh/(m²TFA*a). In combination with heat recovery from shower water and optimized hot water distribution as in variant 1c, the roof can be completely covered with 123 square meters of photovoltaics as shown in variant 3b. Then, demand comes in at 30 kWh/(m²TFA*a) to fulfill Passive House Premium. However, generation is still too low at 88 kWh/(m²ground*a), even though twice as much energy is produced as is needed. One option is to add PV to the garage roof or southern façade of the building; alternatively, residents could invest in a community wind turbine. If a mere three-kilowatt stake is purchased in a local community wind farm (equivalent to 1/500 of a modern onshore wind turbine), the Passive House Premium level is reached, and nearly three times the amount of energy consumed is produced.
 +
 +\\
  
 ===== Traunstein day care center, architects: Architekturwerkstatt Valentin ===== ===== Traunstein day care center, architects: Architekturwerkstatt Valentin =====
Line 73: Line 75:
 In the basic variant (variant 1), the day care center (Figure 3) has a gas condensation boiler for both space heating and hot tap water. The facility does not generate any renewable energy. The building has an annual heating energy demand of 15 kWh/(m²a). Renewable primary energy demand comes in at 84 kWh/(m²a); in other words, the upper limit for renewable primary energy of 60 kWh/(m²a) is exceeded. In the basic variant (variant 1), the day care center (Figure 3) has a gas condensation boiler for both space heating and hot tap water. The facility does not generate any renewable energy. The building has an annual heating energy demand of 15 kWh/(m²a). Renewable primary energy demand comes in at 84 kWh/(m²a); in other words, the upper limit for renewable primary energy of 60 kWh/(m²a) is exceeded.
  
-[{{:picopen:passivhaus-klassen_traunstein.jpg?700|Figure 3: The Traunstein day care center: PER classifications depending on building components used.\\ © Passive House Institute. Photo: Architekturwerkstatt Vallentin. }}]+[{{ :picopen:passivhaus-klassen_traunstein.jpg?700 |Figure 3: The Traunstein day care center: PER classifications depending on building components used.\\ © Passive House Institute. Photo: Architekturwerkstatt Vallentin. }}]
  
 ==== Central hot water supply systems not a good option when little hot tap water is used ==== ==== Central hot water supply systems not a good option when little hot tap water is used ====
Line 86: Line 88:
  
 To generate the 120 kWh/(m²a) of renewable primary energy needed for Passive House Premium, 157 square meters of PV would need to be installed, thereby covering 63 percent of the roof. It is harder to reduce energy demand to 30 kWh/(m²a) of renewable primary energy. In the heating system chosen, a kilowatt-hour of offset heating energy would only reduce the heat pump’s COP. Therefore, it’s better to take another look at lighting. LED lights of utmost efficiency can be installed throughout the building, and electrical efficiency increased in general. Because there is no shower, heat recovery from shower water would not increase efficiency – but the use of energy-saving taps would save about one kilowatt-hour of PER. And when windows of efficiency class phA are used, the Passive House Premium level is reached. To generate the 120 kWh/(m²a) of renewable primary energy needed for Passive House Premium, 157 square meters of PV would need to be installed, thereby covering 63 percent of the roof. It is harder to reduce energy demand to 30 kWh/(m²a) of renewable primary energy. In the heating system chosen, a kilowatt-hour of offset heating energy would only reduce the heat pump’s COP. Therefore, it’s better to take another look at lighting. LED lights of utmost efficiency can be installed throughout the building, and electrical efficiency increased in general. Because there is no shower, heat recovery from shower water would not increase efficiency – but the use of energy-saving taps would save about one kilowatt-hour of PER. And when windows of efficiency class phA are used, the Passive House Premium level is reached.
 +
 +\\
  
 ===== Office complex for the Erdinger Moos wastewater association, architects: Architekturwerkstatt Vallentin ===== ===== Office complex for the Erdinger Moos wastewater association, architects: Architekturwerkstatt Vallentin =====
Line 91: Line 95:
 A cogeneration unit next to the building produces electricity and heat with gas from the water purification process (Figure 4). The heat is exported to a district heat network for use in space heating and hot water. The cogeneration share of heat is estimated at 94 percent. The lines are very short, so losses are low. The biogas from purification has an PER factor of 1.1, but only within the biomass budget of 20 kWh/(m²a) PER. Within that budget, the PER factor is 0.53, which results in an efficiency factor of the grid of 85% and a cogeneration share of 94% (with 46% electricity and 44% heat). Then, the biogas is considered to have a PER of 1.75, and the factor worsens to 0.93. Although the hot water distribution system is relatively inefficient, the initial PER demand is 44.3 kWh/(m²a). With the 247 square meters of PV covering 35% of the roof, the Passive House Plus level is reached. A cogeneration unit next to the building produces electricity and heat with gas from the water purification process (Figure 4). The heat is exported to a district heat network for use in space heating and hot water. The cogeneration share of heat is estimated at 94 percent. The lines are very short, so losses are low. The biogas from purification has an PER factor of 1.1, but only within the biomass budget of 20 kWh/(m²a) PER. Within that budget, the PER factor is 0.53, which results in an efficiency factor of the grid of 85% and a cogeneration share of 94% (with 46% electricity and 44% heat). Then, the biogas is considered to have a PER of 1.75, and the factor worsens to 0.93. Although the hot water distribution system is relatively inefficient, the initial PER demand is 44.3 kWh/(m²a). With the 247 square meters of PV covering 35% of the roof, the Passive House Plus level is reached.
  
-[{{:picopen:passivhaus-klassen_erdinger_moos.jpg?700|Figure 4: Erdinger Moos office complex: PER classifications depending on building components used.\\ © Passive House Institute. Photo: Architekturwerkstatt Vallentin. }}]+[{{ :picopen:passivhaus-klassen_erdinger_moos.jpg?700 |Figure 4: Erdinger Moos office complex: PER classifications depending on building components used.\\ © Passive House Institute. Photo: Architekturwerkstatt Vallentin. }}]
  
 ==== Passive House Premium with electrical and hot water efficiency ==== ==== Passive House Premium with electrical and hot water efficiency ====
Line 99: Line 103:
 ---- ----
  
-==== References ====+===== References =====
  
 [Feist 2014] Feist, Wolfgang: [[basics:passive_house_-_assuring_a_sustainable_energy_supply:passive_house_the_next_decade|Passive House – the next decade]]. In: Feist, Wolfgang (Hrsg.): Tagungsband zur 18. Internationalen Passivhaustagung 2014 in Aachen. PHI Darmstadt 2014 [Feist 2014] Feist, Wolfgang: [[basics:passive_house_-_assuring_a_sustainable_energy_supply:passive_house_the_next_decade|Passive House – the next decade]]. In: Feist, Wolfgang (Hrsg.): Tagungsband zur 18. Internationalen Passivhaustagung 2014 in Aachen. PHI Darmstadt 2014
  
 [Krick 2012] Krick, Benjamin: Zukünftige Bewertung des Energiebedarfes von Passivhäusern. In: Feist (Hrsg.): Protokollband des Arbeitskreises kostengünstige Passivhäuser Nr. 46: Nachhaltige Energieversorgung mit Passivhäusern. PHI Darmstadt 2012 [Krick 2012] Krick, Benjamin: Zukünftige Bewertung des Energiebedarfes von Passivhäusern. In: Feist (Hrsg.): Protokollband des Arbeitskreises kostengünstige Passivhäuser Nr. 46: Nachhaltige Energieversorgung mit Passivhäusern. PHI Darmstadt 2012
 +
 +[Krick 2015] Krick, Benjamin: Classic, Plus, Premium: The new Passive House classes and how they can be reached In: Feist, Wolfgang (Hrsg.): Tagungsband zur 19. Internationalen Passivhaustagung 2015 in Leipzig. PHI Darmstadt 2015
  
 [Ochs 2013] Ochs, Dermentzis, Feist: Energetic and Economic Optimization of the Renewable Energy Yield of Multi-Storey PHs. In Feist, Wolfgang (Hrsg.): Tagungsband zur 17. Internationalen Passivhaustagung 2013 in Frankfurt/Main. PHI Darmstadt 2013 [Ochs 2013] Ochs, Dermentzis, Feist: Energetic and Economic Optimization of the Renewable Energy Yield of Multi-Storey PHs. In Feist, Wolfgang (Hrsg.): Tagungsband zur 17. Internationalen Passivhaustagung 2013 in Frankfurt/Main. PHI Darmstadt 2013
 +
 +----
 +
 +====== See also ======
 +
 +[[basics:energy_and_ecology:primary_energy_renewable_per]] - Passipedia Landing Page
 +
 +[[certification:passive_house_categories]]
  
certification/passive_house_categories/classic-plus-premium.1713470453.txt.gz · Last modified: by jgrovesmith