basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples:unheatedb

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples:unheatedb [2019/01/24 08:47] – [Calculation of the conductance] cblagojevicbasics:building_physics_-_basics:thermal_bridges:tbcalculation:examples:unheatedb [2019/01/24 09:40] – [See also] cblagojevic
Line 11: Line 11:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\frac{1}{U} = \frac{1}{U_f} + \frac{A}{(A \cdot U_{bf}) + (z \cdot P \cdot U_{bw}) + (h \cdot P \cdot U_w) + (0{.}33 \cdot n \cdot V)}+\large{\dfrac{1}{U} = \dfrac{1}{U_f} + \dfrac{A}{(A \cdot U_{bf}) + (z \cdot P \cdot U_{bw}) + (h \cdot P \cdot U_W) + (0{,}33 \cdot n \cdot V)}}
 </latex> </latex>
 \\ \\
Line 37: Line 37:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Phi = L_{iu} \cdot (\theta_i - \theta_u) + L_{ie} \cdot (\theta_i - \theta_e)$$+\large{\Phi = L_{iu} \cdot (\theta_i - \theta_u) + L_{ie} \cdot (\theta_i - \theta_e)}
 </latex> </latex>
 </WRAP> </WRAP>
Line 45: Line 45:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Phi = \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}}\right) \cdot (\theta_i - \theta_e) \quad \Rightarrow \quad L_{2d} =  \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}} + L_{ie}\right)$$+\large{\Phi = \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}}\right) \cdot (\theta_i - \theta_e) \quad \Rightarrow \quad L_{2d} =  \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}} + L_{ie}\right)}
 </latex> </latex>
 </WRAP> </WRAP>
Line 74: Line 74:
 **Determining the conductance**  **Determining the conductance** 
 <latex> <latex>
-$L_{2d}+\Large{_{2d}}
 </latex> </latex>
 </WRAP> </WRAP>
Line 83: Line 83:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
 +\large{
 $$L_{iu} = 0{.}5 \cdot (L_1-L_2+L_3) = 0{.}5540 \, \frac{\text{W}}{\text{m} \cdot \text{K}}} $$\\ $$L_{iu} = 0{.}5 \cdot (L_1-L_2+L_3) = 0{.}5540 \, \frac{\text{W}}{\text{m} \cdot \text{K}}} $$\\
 $$L_{is} = 0{.}5 \cdot (L_1+L_2-L_3) = 0{.}2314 \, \frac{\text{W}}{\text{m} \cdot \text{K}}} $$\\ $$L_{is} = 0{.}5 \cdot (L_1+L_2-L_3) = 0{.}2314 \, \frac{\text{W}}{\text{m} \cdot \text{K}}} $$\\
-$$L_{us} = 0{.}5 \cdot (L_2+L_3-L_1) = 2{.}6177 \, \frac{\text{W}}{\text{m} \cdot \text{K}}}$$+$$L_{us} = 0{.}5 \cdot (-L_1+L_2+L_3) = 2{.}6177 \, \frac{\text{W}}{\text{m} \cdot \text{K}}}$$}
 </latex> </latex>
 </WRAP> </WRAP>
 +
  
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$L_{2d} =  \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}} + L_{ie}\right) = 0{.}6886 \, \frac{\text{W}}{\text{m} \cdot \text{K}}}$$+\large{L_{2d} =  \left(\frac{L_{iu} \cdot L_{ue}}{L_{iu} + L_{ue}} + L_{ie}\right) = 0{.}6886 \, \frac{\text{W}}{\text{m} \cdot \text{K}}}}
 </latex> </latex>
 </WRAP> </WRAP>
Line 101: Line 102:
  
 Therefore: Therefore:
- 
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\frac{1}{U} = \frac{1}{U_f} + \frac{A}{(A \cdot U_{bf}) + (z \cdot P \cdot U_{bw}) + (h \cdot P \cdot U_w) + (0{.}33 \cdot n \cdot V)} +$$\dfrac{1}{U} = \dfrac{1}{U_f} + \dfrac{A}{(A \cdot U_{bf}) + (z \cdot P \cdot U_{bw}) + (h \cdot P \cdot U_W) + (0{.}33 \cdot n \cdot V)} 
 \quad \Rightarrow \quad \quad \Rightarrow \quad
-U = 0{.}1273 \, \frac{\text{W}}{\text{m}^2 \cdot \text{K}}} $$+U = 0{.}1273 \, \dfrac{\text{W}}{\text{m}^2 \cdot \text{K}}}$$
 </latex> </latex>
 </WRAP> </WRAP>
Line 114: Line 114:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Psi_g = L_{2d}-l_{EW} \cdot U_{EW}-0{.}5 \cdot B' \cdot U$$+$$\Psi_g = L_{2d}-l_{AW} \cdot U_{AW}-0{.}5 \cdot B' \cdot U$$
 </latex> </latex>
 </WRAP> </WRAP>
Line 125: Line 125:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Psi_g = 0{.}687 \, \frac{\text{W}}{\text{m} \cdot \text{K}}} \, - \, 1{.}830 \, \text{m} \, \cdot \, 0{.}120 \, \frac{\text{W}}{\text{m}^2 \cdot \text{K}}} \, - \, 0{.}5 \, \cdot \, 8 \, \text{m} \, \cdot \, 0{.}1273 \, \frac{\text{W}}{\text{m}^2 \cdot \text{K}}} = -0{.}042 \, \frac{\text{W}}{\text{m} \cdot \text{K}}}$$+$$\Psi_g = 0{.}687 \, \dfrac{\text{W}}{\text{m} \cdot \text{K}}} \, - \, 1{.}830 \, \text{m} \, \cdot \, 0{.}120 \, \dfrac{\text{W}}{\text{m}^2 \cdot \text{K}}} \, - \, 0{.}5 \, \cdot \, 8 \, \text{m} \, \cdot \, 0{.}1273 \, \dfrac{\text{W}}{\text{m}^2 \cdot \text{K}}} = -0{.}042 \, \dfrac{\text{W}}{\text{m} \cdot \text{K}}}$$
 </latex> </latex>
 </WRAP> </WRAP>
Line 139: Line 139:
 **Determining the conductance**  **Determining the conductance** 
 <latex> <latex>
-$L_{2d}+\Large{L_{2d}}
 </latex> </latex>
 </WRAP> </WRAP>
Line 160: Line 160:
 **Ψ-value (proportion of exterior wall)**  **Ψ-value (proportion of exterior wall)** 
 </WRAP> </WRAP>
- 
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Psi_g = L_{ie}-l_{EW} \cdot U_{EW}$$ +\large{\Psi_g = L_{ie}-l_{AW} \cdot U_{AW}$} 
-$$\Psi_{exterior wall} = 0{.}231-1{.}830 \cdot 0{.}120 = 0{.}0114$$+</latex> 
 +</WRAP> 
 + 
 +<WRAP centeralign> 
 +<latex> 
 +\large{\Psi_{exterior wall} = 0{.}231-1{.}830 \cdot 0{.}120 = 0{.}0114}
 </latex> </latex>
 </WRAP> </WRAP>
Line 176: Line 180:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\Psi_g = L_{iu}-0{.}5 \cdot B' \cdot U_{basement ceiling}$$ +\large{\Psi_g = L_{iu}-0{.}5 \cdot B' \cdot U_{basement ceiling}} 
-$$\Psi_{ basement ceiling } = 0{.}5543-0{.}5 \cdot 8 \cdot 0{.}148 = -0{.}0377$$+</latex> 
 +</WRAP> 
 + 
 +<WRAP centeralign> 
 +<latex> 
 +\large{\Psi_{basement ceiling} = 0{.}5543-0{.}5 \cdot 8 \cdot 0{.}148 = -0{.}0377}
 </latex> </latex>
 </WRAP> </WRAP>
Line 185: Line 194:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$U_{f,corrected} = U_f + \frac{\Psi_{basement ceiling} \cdot P}{A}$$+\large{U_{f,corrected} = U_f + \dfrac{\Psi_{basement ceiling} \cdot P}{A}}
 </latex> </latex>
 </WRAP> </WRAP>
Line 197: Line 206:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$\theta_{Keller} = \theta_i-f_x \cdot (\theta_i - \theta_e) = 20 \, ^\circ C - 0{.}6 \cdot (20 \, ^\circ C - (-10 \, ^\circ C)) = 2 \, ^\circ C$$+\large{\theta_{basement} = \theta_i-f_x \cdot (\theta_i - \theta_e) = 20 \, ^\circ C - 0{.}6 \cdot (20 \, ^\circ C - (-10 \, ^\circ C)) = 2 \, ^\circ C}
 </latex> </latex>
 </WRAP> </WRAP>
Line 206: Line 215:
 **Determining the minimum surface temperature and**  **Determining the minimum surface temperature and** 
 <latex> <latex>
-$f_{Rsi}+\Large{f_{Rsi}}
 </latex> </latex>
 </WRAP> </WRAP>
Line 216: Line 225:
 <WRAP centeralign>  <WRAP centeralign> 
 <latex> <latex>
-$$f_{Rsi} = \frac{17{.}6 - (-10)}{20-(-10)}=0{.}92$$+\large{f_{Rsi} = \dfrac{17{.}6 - (-10)}{20-(-10)}=0{.}92}
 </latex> </latex>
 </WRAP> </WRAP>
Line 224: Line 233:
 ===== See also ===== ===== See also =====
  
-  * [[basics:building_physics_-_basics:heat_transfer:thermal_bridges:thermal_ bridge_calculation|Thermal bridge calculation]] +  * [[basics:building_physics_-_basics:thermal_bridges:tbcalculation|Thermal bridge calculation]] 
-  * [[basics:building_physics_-_basics:heat_transfer:what_defines_thermal_bridge_free_design:thermal bridges:thermal_bridge_calculation:recommended procedure]] +  * [[basics:building_physics_-_basics:thermal_bridges:tbcalculation:ground_contact:procedure|]] 
-  * [[basics:building_physics_-_basics:heat_transfer:thermal_bridges:thermal_bridge_calculation:examples]]+  * [[basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples|Examples of thermal bridge calculations]] 
 + 
  
basics/building_physics_-_basics/thermal_bridges/tbcalculation/examples/unheatedb.txt · Last modified: 2022/02/15 18:58 by admin